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A simple method is given for calculating the magnetic field components in or around any thick finite 

solenoid by superposition of fields of semi-infinite solenoids with zero inner radius. Equations and graphs 
are presented for the field components of such semi-infinite solenoids. From these graphs, the fields for 
solenoids of practical interest can be obtained with errors of less than a few percent. Greater accuracy is 
possible if numerical tables are used instead of graphs. 

@a% 
INTRODUCTION nondimensionally, computed electronically, and tabu- 

lated or graphed as a function of only two variables, the 
nondimensional field-point coordinates, I = R/b and 
z=Z/b. Any desired finite solenoid is then treated as a 
superposition of four of these semi-infinite solenoids, 
and any field component is obtained by algebraic addi- 
tion of four numbers derived from the tables or graphs, 
each number corresponding to the contribution of one 
semi-infinite solenoid. 

H E  magnetic field components off the axis of a 
thick solenoid cannot be calculated easily except 

by electronic computers. Tables of these fields, prepared 
from computer output, would often be useful, especially 
in coil design. Such tables would eliminate further use 
of computers in many cases. But the field components 
of a thick solenoid depend on four variables, which are 
the radial and axial coordinates of the field mint  and 

T 

the two parameters a and @ needed to specify the 
solenoid shape, where a= outer diameter/inner diameter 
and fi= length inner diameter. Tabulating this function 
of four continuous variables fiould require an un- 
reasonable amount of space for complete coverage of 
the range of variables of common interest, although 
some tables and graphs exist which partially cover the 
ranges of the four variables.‘+ 

However, a comprehensive presentation in terms of 
only two variables is possible if a superposition method 
is used to find the desired field from tables or graphs of 
the field of a semi-infinite solenoid with zero inner 
radius. This semi-inhite solenoid is defined as an 
axially s)-mmetric, uniform, azimuthal current densit?- 
which extends from the axis of a cylindrical coordinate 
system out to R= b and from Z= 0 to Z =  - Q) (Fig. 1). 
It differs from ordinary solenoids in that i t  is semi- 
infinitely long and has no cylindrical hole. Each field 
component of this special solenoid can be expressed 

SUPERPOSITION OF FOUR SEMI-INFINITE SOLE- 
NOIDS TO FORM A FINITE SOLENOID WITH 

FINITE THICKNESS 

Figure 2 shows how four semi-infinite solenoids of 
appropriate sizes and locations can be superimposed to 
form a thick, finite solenoid. Curved arrows show the 
directions of circulation of the currents. Cancellation of 
oppositely directed currents occurs in many regions, 
leaving only the desired h i t e  solenoid. 

The field of the thick, finite solenoid can be expressed 
in terms of the fields of the four contributing semi- 
infinite solenoids in the following manner. Consider 

FIG. 1. Semi-infinite solenoid with zero inner radius. Current 
density is uniform, extending from axis to R = b  and from Z=O 
to  Z =  - m . Curved arrows indicate direction of current 
circulation. 1 ‘,:I:; 
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FIG. 2. Formation of finite solenoid from four semi-infinite 
solenoids. Curved arrows indicate directions of current circulation. 
Position of typical field point (X) is shown with respect to  the 
desired finite solenoid and with respect to each semi-infinite 
solenoid. Xote that since nondimensional tables or graphs are to  
be used, each semi-infinite solenoid effectively has its own coordi 
nate system, with its own radius as the unit of length. 

1764 



Y G S E T I C  F I E L D S  O F  S O L E S O I D S  

either the axial or the radial component of the field of 
the infinite solenoid. To simplify notation, no symbols 
will be used to distinguish radial and axial field com- 
ponents; all equations in this section are valid for either 
component. Let H I ,  H f ,  H3, and Hq represent the values 
of the desired field coniponent which would be con- 
tributed by the four semi-infinite solenoids marked 1, 
2, 3, and 4, respectively, in Fig. 2 if each had the con- 
ventional sense of current circulation. The actual fields 
contributed by the solenoids numbered 2 and 4 in the 
figure are thus -Hz and -HA,  because the current 
densities have a reversed sense in these two semi- 
infinite solenoids. The field of the desired thick finite 
solenoid is simply the sum of the contributions of the 
four semi-infinite solenoids : 

H= Hi- H2+ H3- Hq. 

If each teini is divided by the current density J 
(assumed to be uniform) and by the inner radius s of 
the finite solenoid, a nondimensional expression results : 

(1) 

H/J.s= Hi /Js -  H ~ / J s + H ~ / J s -  HI /Js .  

Let the radii of the semi-infinite solenoids be called 
b,, b2, b3, and bl. Note that b3= b4=s and bl= bn=as. 
Then 

H / J s =  aHI/Jbi-aHz,/Jbzf €I:{/Jbs- H J J b J .  

Let the nondimensional quantities such as H, /Jb ,  he 
denoted by h l ,  etc. Then 

H / J ~ = a h - ~ ~ h 2 + h 3 -  hi. (2) 

The quantities hl, hz, h ~ ,  and hi are the nondiniensional 

FIG. 3. Nondimensional axial field of semi-infinite solenoid. 
Note: For z negative and r 2 1 ,  no curves are shown; for such 
values, use the relation: / tZ (y ,  - z )= - / i z ( r , z )  for ~21.  

FIG. 4. Nontlimen- 
sional radial field of 
semi-infinite solenoid. 
Note: Values for z < O  
are not shown because 
/ & ( I . ,  -.I = k ( r , z ) .  

lields of the four semi-infinite solenoids, These non- 
diniensional fields can be approximately evaluated by 
using the graphs in Figs. 3 and 1 if the proper coordinate 
systems are used for locating the field point. The most 
convenient coordinate system to use with an\- particular 
semi-infinite solenoid is a cylindrical one with the origin 
a t  the center of the end face. I t  is convenient to non- 
diniensioiialize the radial and axial coordinates by 
expressing them in terms of the radius of the senii- 
infinite solenoid as a unit of measurement. Giving each 
semi-infinite solenoid its own origin of coordinates and 
unit of measurement means that the field point will have 
different coordinates with respect to each of the four 
semi-infinite solenoids. Figure 2 shows the coordinate 
system to be used for each semi-infinite solenoid : (rl ,z1) 
for solenoid 1, ( r2 , z2 )  for solenoid 2 ;  etc. Xote that the 
unit of length for measuring rl and z1 is b l ;  for 7 3  and z:i 
it  is b3; etc. Making these field point Coordinates 
explicit in Eq. (2) gives 

H/Js=ah(ri,zl)-ah(Yz,zz)+h(Ya,Z3)-h(r~,z~). ( 3 )  

Equation (3 ) ,  containing only nondimensional terms 
which are expressed in terms of nondimensional co- 
ordinates, can be used to calculate the field components 
of any solenoid of finite length and thickness from 
h,(r ,z)  and h3(r,z). The functions h,(r ,z)  and hz( r , z )  
are the nondiniensional radial and axial components of 
the magnetic field intensity of the semi-infinite solenoid, 
and their derivations are sketched a t  the end of the 
paper. They have been computed numerically and are 
plotted in Figs. 3 and 4. 

An example should clarify the procedure for calculat- 
ing a field by using Eq. (3) and the graphs. Suppose the 
axial field comDonent is desired a t  the indicated field 
point for the finite solenoid shown in cross section in 



G .  1'. B R O I V N  A N D  L .  F L A X  1766 

--- I ,i -.. 

I 

FIG. 5 .  Cross section of solenoid used in example calculation. 
Sumbered corners correspond to lorations of the edges of the end 
planes of the like-numbered semi-infinite solenoids of Fig. 2. 

Fig. 5. The inner radius of this finite solenoid is s. Each 
comer in the cross section is numbered and indicates the 
location of the circular edge of the end plane of the semi- 
infinite solenoid with the same number in Fig. 2. This 
numbering also corresponds to that of Eq. (3). Compar- 
ing Figs. 2 and 5, one can see that rl=0.5/2=0.25, 
r2=0.5/'2=0.25, r,=O.5, r4=0.5, zl= -1- 2 -  -0.5, 
z2=$=1.5, z3=3, and z4=-1. Since a=2, Eq. (3) 
becomes 

N J J s  = 211, (0.25, - 0.5) - 212, (0.25,l.j) 
+Iz,(0.5,3)-1?,(0.5, - 1). 

Figure 3 yields the necessary values of h,, hence 

H,/ Js= 2 X0.62- 2X0.030+O.008- 0.45 = 0.74. 

Although H / J s  is a nondimensional quantity, the ex- 
pressions used in calculating h,(r,z)  and h-(r,z) were 
derived by using rationalized mks units, so a rationalized 
system of units must be used in these computations. 
Supposing J =  10' Aim? and s= 0.05 m and noting that 
B=poH in rationalized m k s  units results in the follow- 
ing for the axial component of magnetic induction: 

B,= p J s X  0.74= 47rX lW7X 1O7X0.O5X0.74= 0.46 
Wbjm?, or 4600 G. 

Reference 1 has a table of the fields of this particular 
Solenoid and gives the more exact value of 0.7-205 for 
H J J s .  The error in the above result is fortuitously 
much less than 1%, but errors for other solenoids 
that are neither too short nor too thin will be typically 
only a few percent if the graphs presented herein are 
used. However, for v e v  short solenoids or for very thin 
ones, two terms in Eq. (3) may be nearly equal but 
opposite in sign, causing a loss of one or more leading 
digits through subtraction. At the end of a calculation, 
i t  can easily be seen whether accuracy has been lost in 
this way. 

For calculating fields of such short or thin solenoids 
or to get greater accuracy for any solenoid, a tabulation 
of the field components of the semi-infinite solenoid is 
needed rather than graphs. Five-place tables and larger 
reproductions of Figs. 3 and 4 are to be published. How- 
ever, approximate field values can be obtained from 
Figs. 3 and 4 for a veq- wide range of the shape parame- 
ters (Y and /3. A remarkable feature of this method is 

that so much information about solenoids can he pre- 
sented on these graphs and can be handled without 
further use of a computer. 

The field of the semi-infinite solenoid has several 
properties which mal- be useful in calculations and some 
of which have been 1ised to r ? x k  Figs. 3 and 1 n o r e  
compact. These are: 

(1) For z=O the nondiniensional axial field coni- 
ponent 12, vanes linearly from the value 0.5 on the axis 
to zero a t  I =  1. For z=O and r> 1 the axial field is zero. 

(2) For a given value of r, the sum of the nondimen- 
sional axial field components a t  plus z and at minus z 
gives twice the value for z=O at the same r :  

(3) For r> 1 the nondiniensional axial fields a t  posi- 
tive and negative values of z for a given radius are equal 
in magnitude but opposite in sign: h,(r,z)= -hz(r, -2) 

for r> 1. 
(4) For any given r the nondiniensional radial field 

coniponents are equal both in magnitude and in sign for 
positive and negative z :  h,(r,z)= lzJ,r, -2). 

hi (r,z) +h,  ( I ,  - 2 )  = 2h, (r,O). 

CALCULATION OF T H E  FIELD COMPONENTS O F  

Let R, Z ,  and Q be the radial, axial, and azimuthal 
coordinates of the field point, as in Fig. 1, and let a, 1, 
and 0 be the coordinates of the source point. The origin 
of the coordinate system lies a t  the center of the end 
plane of the semi-infinite solenoid. The azimuthal co- 
ordinates 8=0 and @ = O  are taken as coincident. The 
only nonvanishing component of the magnetic vector 
potential is the azimuthal component A*, which in 
rationalized m l i s  units is 

..=e[ 2* --D d i l b d a l u  

Then by using H =  ( 1 1 ~ 0 )  curlA, expressions for HZ and 
A, can be obtained. Let .$=Z-l, then 

T H E  SEMI-INFINITE SOLENOID 

a coSedB 

[ ( Z -  1)2+ R2+a2- 2aR cos81: 

a coSed8 
H ,  = 51 ' d a L "  

27r 0 [Z2+RL+&-2aR coSe]$' 
and 

H ,  = 'J' d a l r  a cosede 

27r z [.$2+Rz+a2-2aR cos@]$ 

The expression for H ,  can be integrated analytically 
with respect to a, and the expression for H ,  can be inte- 
grated analytically with respect to both .$ and a. If the 
resulting expressions are divided by J b  and if the non- 
dimensional field point variables r= Rlb and z=Z, b are 
substituted into the expressions, the following results: 

1-r cod 

(z2+r' sin%)$ 
.'! li r cos% sinh-' 

27r 0 
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7r 
+-(1-r+ 11- 

2 

where F =  (z2+r2+1-2r cos8)t. 
These expressions were integrated by a computer. 

The second integral in h,(r,z) is improper for z=O;  
consequently, for z=O it  was integrated by parts ana- 
lytically to avoid computer difficulties. 

Five-place tables (to be published) of h,(r,z) and 
h,(r,z) were automatically printed by the computer and 

1 } Figs. 3 and 4 were plotted from the tables. 
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